Как определить период тригонометрической функции

Как определить период тригонометрической функции


Как найти период тригонометрической функции

Если вам дано простое выражение, в котором присутствует лишь одна тригонометрическая функция (sin, cos, tg, ctg, sec, cosec), причем угол внутри функции не умножен на какое-либо число, а она сама не возведена в какую-либо степень – воспользуйтесь определением. Для выражений, содержащих sin, cos, sec, cosec смело ставьте период 2П, а если в уравнении есть tg, ctg – то П. Например, для функции у=2 sinх+5 период будет равен 2П.

Если угол х под знаком тригонометрической функции умножен на какое-либо число, то, чтобы найти период данной функции, разделите стандартный период на это число. Например, вам дана функция у= sin 5х. Стандартный период для синуса – 2П, разделив его на 5, вы получите 2П/5 – это и есть искомый период данного выражения.

Чтобы найти период тригонометрической функции, возведенной в степень, оцените четность степени.

Для четной степени уменьшите стандартный период в два раза. Например, если вам дана функция у=3 cos^2х, то стандартный период 2П уменьшится в 2 раза, таким образом, период будет равен П. Обратите внимание, функции tg, ctg в любой степени периодичны П.

Если вам дано уравнение, содержащее произведение или частное двух тригонометрических функций, сначала найдите период для каждой из них отдельно. Затем найдите минимальное число, которое умещало бы в себе целое количество обоих периодов. Например, дана функция у=tgx*cos5x. Для тангенса период П, для косинуса 5х – период 2П/5. Минимальное число, в которое можно уместить оба этих периода, это 2П, таким образом, искомый период – 2П.

Если вы затрудняетесь действовать предложенным образом или сомневаетесь в ответе, попытайтесь действовать по определению.

Возьмите в качестве периода функции Т, он больше нуля. Подставьте в уравнение вместо х выражение (х+Т) и решите полученное равенство, как если бы Т было параметром или числом. В результате вы найдете значение тригонометрической функции и сможете подобрать минимальный период. Например, в результате упрощения у вас получилось тождество sin (Т/2)=0. Минимальное значение Т, при котором оно выполняется, равно 2П, это и будет ответ задачи.



функция, данный, период, минимальный, тригонометрический:Тригонометрические функции периодичны, то есть повторяются через определенный период. Благодаря этому достаточно исследовать функцию на этом промежутке и распространить найденные свойства на все остальные периоды.

как определить период тригонометрической функции

Как определить период тригонометрической функции 13 8 10